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Regression diagnostics
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Outliers
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What to look for

We must identify observations with high leverage; that is, with an unusual x value
and that is out of line with the other observations. In the figure, the first graph
shows an outlier with low leverage because it is close to the centre of the x values.
The second graph shows a high leverage outlier. The third graph doesn’t really
have an outlier. Although there is one unusual observation, it is in line with the
other cases. Only in the second graph does deletion of the outlier have much of an
impact on the regression line.

David Barron Further topics in linear regression Hilary Term 2018 4 / 40



High leverage outliers
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Example
Attitudes to inequality
Data from World Values Survey 1990. secpay: attitude to two secretaries with the same jobs
getting paid different amounts if one is better at the job than the other. 1=Fair, 2=Unfair.
Variable is the national average. gini: the gini coefficient of income inequality in the country.
0=perfect equality, 1=perfect inequality. gdp: GDP per capita in US dollars; democracy:
1=experienced democratic rule for at least 10 years. Here we look only at non-democratic
countries.

Call:
lm(formula = secpay ~ gini + gdp, data = weak.nondem)

Residuals:
Min 1Q Median 3Q Max

-0.1924 -0.0789 -0.0196 0.0382 0.4093

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.02826650 0.12778830 8.05 0.000000039
gini 0.00074237 0.00276544 0.27 0.791
gdp 0.00001752 0.00000799 2.19 0.039

Residual standard error: 0.138 on 23 degrees of freedom
Multiple R-squared: 0.175, Adjusted R-squared: 0.104
F-statistic: 2.45 on 2 and 23 DF, p-value: 0.109
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Scatterplot
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Hat values

The hat value is a common way of measuring leverage. Fitted values can be
expressed in terms of observed values:

ŷj = h1jy1 + h2jy2 + · · ·+ hjjyj + · · ·+ hnjyn =
n∑

i=1
hijyi .

So, the weight, hij , captures the extent to which yi can affect ŷj . It may be shown
that hi summarizes the potential influence of yi on all the fitted values. They are
bounded by 1/n and 1. The average hat-value is (k + 1)/n. Values twice this
considered noteworthy (some people use three times).
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Hat values plot
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Note that there are some cases with bigger hat values that the two influential cases. Shows
limitation of hat values.

David Barron Further topics in linear regression Hilary Term 2018 9 / 40



Studentized residuals

If we refit the model deleting the ith observation, we obtain estimate of the
standard deviation of residuals, σ−i based on n − 1 cases.

εti = εi

σ−i
√
1− hi

Studentized residuals follow a t-distribution with n − k − 2 degrees of freedom.
Observations outside ±2 range statistically significant.

Significance tests have to be corrected for multiple comparisons. This is done for
you using the outlierTest function in the car package.

rstudent unadjusted p-value Bonferonni p
Slovakia 4.32 0.000278 0.00722
CzechRepublic 2.60 0.016461 0.42798
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Studentized residuals plot
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DFBETA

A direct measure of the influence of an observation on regression parameter
estimates is:

dij = bj − bj(−i)

where bj(−i) is the estimate of βj with the ith observation omitted. These
differences are usually scaled by (omitted) estimates of the standard error of bj :

d∗ij = dij
s(−i)(bj)

.

The dij are often termed DFBETA and the d∗ij are called DFBETAS.
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DFBETA plot
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Cook’s distance

One way to use DFBETAS is to plot them for each independent variable. Another
is to construct an index. Cook’s distance is essentially an F statistic for the
“hypothesis” that βj = bj(−i), j = 0, 1, . . . , k. This is calculated using:

Di = ε∗2i
k + 1 ×

hi
1− hi

,

where ε∗i is the standardized residual. No formal hypothesis test, but rule of thumb
is

Di >
4

n − k − 1
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Cook’s distance plot
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Rules of thumb

Hat-values Values exceeding twice the average ([k + 1]/n) are noteworthy.
Studentized residuals About 5% of these should fall outside the range
|ti | ≤ 2.
DFBETAS |d∗ij | > 2/

√
n

Cook’s D Di > 4/(n − k − 1).
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Heteroskedasticity
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Definition

Heteroskedasticity occurs when var(εi) 6= σ2, but varies across observations. It is
especially problematic when this is related systematically to an explanatory variable.

Problems
Increases standard errors of parameter estimates.
Estimated standard errors are biased.

Solutions
Use a different estimator for standard errors.
Use a different estimator for regression parameters: weighted least squares.
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What to do?

Statistical tests
Goldfeld-Quandt test
Breusch-Pagan test

Remedial action
Heteroskedasticity-consistent standard errors
Weighted least squares
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Director interlocks example
Data on the 248 largest Canadian firms in the mid-1970s. interlocks: the number of board members shared with other major firms; assets: Assets in
millions of dollars; sector: a factor with levels BNK=banking, CON=construction, FIN=other financial, HLD=holding company, MAN=manufacturing,
MER=merchandising, MIN=mining, TRN=transport, WOD=wood and paper; nation: nation of control, a factor with levels CAN=Candian, OTH=Other,
UK, US.

Call:
lm(formula = interlocks ~ I(assets/1000) + sector + nation, data = Ornstein)

Residuals:
Min 1Q Median 3Q Max

-25.00 -6.60 -1.63 4.78 40.73

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2669 1.5615 6.58 3.1e-10
I(assets/1000) 0.8096 0.0612 13.23 < 2e-16
sectorBNK -17.8139 5.9065 -3.02 0.0028
sectorCON -4.7087 4.7282 -1.00 0.3203
sectorFIN 5.1527 2.6457 1.95 0.0527
sectorHLD 0.8777 4.0041 0.22 0.8267
sectorMAN 1.1487 2.0645 0.56 0.5785
sectorMER 1.4915 2.6359 0.57 0.5721
sectorMIN 4.8803 2.0670 2.36 0.0190
sectorTRN 6.1713 2.7599 2.24 0.0263
sectorWOD 8.2283 2.6786 3.07 0.0024
nationOTH -1.2413 2.6953 -0.46 0.6456
nationUK -5.7752 2.6745 -2.16 0.0318
nationUS -8.6181 1.4963 -5.76 2.6e-08

Residual standard error: 9.83 on 234 degrees of freedom
Multiple R-squared: 0.646, Adjusted R-squared: 0.627
F-statistic: 32.9 on 13 and 234 DF, p-value: <2e-16
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Heteroskedastic errors
A common diagnostic is to plot studentised residuals against fitted values. The
cone shape is characteristic of heteroskedastic errors.

−2

0

2

4

0 30 60 90

Fitted values

S
tu

de
nt

is
ed

 r
es

id
ua

ls

David Barron Further topics in linear regression Hilary Term 2018 21 / 40



Goldfeld-Quandt test
Based on the idea that if the sample observations have been generated under the conditions of
homoscedasticity, then the variance of the disturbances of one sub-sample is the same as the
variances of any other sub-sample. Order cases by the variable you think variance is associated
with (often fitted values from regression).

R =
SSE2
SSE1

.

SSE from the 1st regression: 4245.1
SSE from the 2nd regression: 17187.4
The F -statistic for this test: 4.04
The p-value for this test: � 0.05

gqtest(inter1, order.by = int1.fit)

Goldfeld-Quandt test

data: inter1
GQ = 4, df1 = 100, df2 = 100, p-value = 9e-13
alternative hypothesis: variance increases from segment 1 to 2
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Breusch-Pagan test

Model variances using variables thought to be related to the heteroskedasticity.
First obtain residuals by OLS, then divide these by an estimate of the variance ŝ2.
Use as the dependent variable, with either the fitted values or some other variable
as “explanatory” variable; the B-P statistic is the explained variance of this
regression divided by 2. This has a χ2 distribution with degrees of freedom equal to
number of regressors in the second regression.

ncvTest(inter1)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 47 Df = 1 p = 7.15e-12
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Transform standard errors

A common way of dealing with heteroskedasticity is to transform standard
errors—recall it is standard errors not parameter estimates that are affected by this
problem.

V (b) = (X ′X )−1X ′diag(e2)X (X ′X )−1.

The variance-covariance matrix of the parameter estimates is transformed by the
square of the residuals. The square root of the diagonal of this matrix is the
standard errors of the parameter estimates. This is very commonly used in practice
now. They are called the heteroskedasticity-consistent standard errors or robust
standard errors.
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Example: HCCM results

The idea is that the HC (“heteroskedasticity-consistent”) standard errors are used
instead of the usual ones to calculate t-statistics and hence p-values. You
sometimes see these referred to as “robust” standard errors, or “White-corrected”
standard error (after their inventor). The method of calculating them is sometimes
referred to as a “sandwich estimator.”

Estimate H-C Std. Error t-value Pr(>|t|)

(Intercept) 10.27 1.50 6.83 0.00
I(assets/1000) 0.81 0.09 9.32 0.00
sectorBNK -17.81 5.10 -3.50 0.00
sectorCON -4.71 2.68 -1.76 0.08
sectorFIN 5.15 2.70 1.91 0.06
sectorHLD 0.88 4.47 0.20 0.84
sectorMAN 1.15 1.74 0.66 0.51
sectorMER 1.49 2.20 0.68 0.50
sectorMIN 4.88 1.81 2.70 0.01
sectorTRN 6.17 3.07 2.01 0.04
sectorWOD 8.23 3.27 2.51 0.01
nationOTH -1.24 2.81 -0.44 0.66
nationUK -5.78 2.06 -2.81 0.00
nationUS -8.62 1.38 -6.25 0.00
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Linearity
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Residual plots
The most straightforward thing to do is plot residuals against each of the
explanatory variables to look for evidence of non-linearity.
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Education Age
Test 3.66 -21.4
Pvalue 0.00 0.0

This function also provides a test of whether adding a quadratic term would be
statistically significant.
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Component plus residual plots

The y axis is:
e + β̂iXi

where e are residuals, β̂i is the estimated regression parameter for the ith
explanatory variable, Xi , which is plotted on the x-axis. The augmented plots
shown also have the linear fit (red dotted line) and a non-parametric ‘smoother’
(green solid line). This can also show a departure from linearity.
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Add quadratic terms

Call:
lm(formula = Logwages ~ sex + language + poly(education, 2, raw = TRUE) +

poly(age, 2, raw = TRUE), data = SLID)

Residuals:
Min 1Q Median 3Q Max

-2.0855 -0.2404 0.0223 0.2515 1.7813

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4055703 0.0920226 4.41 0.0000107
sexMale 0.2215223 0.0125469 17.66 < 2e-16
languageFrench -0.0133857 0.0255896 -0.52 0.60
languageOther -0.0089290 0.0197519 -0.45 0.65
poly(education, 2, raw = TRUE)1 -0.0023108 0.0110123 -0.21 0.83
poly(education, 2, raw = TRUE)2 0.0018456 0.0004094 4.51 0.0000067
poly(age, 2, raw = TRUE)1 0.0835514 0.0031156 26.82 < 2e-16
poly(age, 2, raw = TRUE)2 -0.0008590 0.0000398 -21.57 < 2e-16

Residual standard error: 0.395 on 3979 degrees of freedom
Multiple R-squared: 0.384, Adjusted R-squared: 0.383
F-statistic: 354 on 7 and 3979 DF, p-value: <2e-16

Res.Df RSS Df Sum of Sq F Pr(>F)

3981 697 NA NA NA NA
3979 622 2 75.1 240 0
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Effect plots
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Selection models
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Sample selection bias

A general issue, not only concerning linear regression. It is important because it
undermines external and internal validity. That is, the problem is not solved by
claiming to be interested only in a sub-set of the population. In effect sample
selection excludes a regressor that is correlated with an included regressor.
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Illustration
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Types of selection
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Intuition

Non-random selection—inference may not extend to the unobserved group
Example: Suppose we observe that college grades are uncorrelated with
success in graduate school
Can we infer that college grades are irrelevant?
No: applicants admitted with low grades may not be representative of the
population with low grades
Unmeasured variables (e.g. motivation) used in the admissions process might
explain why those who enter graduate school with low grades do as well as
those who enter graduate school with high grades
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Selection equation

z∗i =latent variable, DV of selection equation; the propensity to be including in
the sample;
w ′i = vector of covariates for unit i for selection equation;
α = vector of coefficients for selection equation;
εi = random disturbance for unit i for selection equation;

z∗i = w ′i α+ εi .

Outcome equation
yi = DV from outcome equation;
x ′i = vector of covariates for unit i for outcome equation;
β = vector of coefficients for outcome equation;
ui = random disturbance for unit i for outcome equation;
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Heckman model

Assume that yi is observed if and only if a second, unobserved latent variable, z∗i
exceeds a particular threshold:

zi =
{
1 if z∗i > 0;
0 otherwise

So, we first estimate the probability that zi = 1, and use a transformation of this
predicted probability as an independent variable in the outcome equation.
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Sample selection bias: Conclusions

If potential observations from some population of interest are excluded on a
nonrandom basis, one risks sample selection bias.
It is difficult to anticipate whether the biased regression estimates overstate or
understate the true causal effects.
Problems caused by nonrandom exclusion of observations are manifested in the
expected values of the endogenous variable.
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Example

A common example of sample selection is when studying wages. In order to earn a wage, you have to have a
job. You are more likely to have a job if you are able to earn a good wage. So, there is likely to be sample
selection. This is the ordinary regression.

Call:
lm(formula = Logwage ~ education + age, data = wom)

Residuals:
Min 1Q Median 3Q Max

-1.3116 -0.1389 0.0223 0.1769 0.6962

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.362865 0.041026 57.59 <2e-16
education 0.038897 0.002297 16.93 <2e-16
age 0.006358 0.000863 7.37 3e-13

Residual standard error: 0.251 on 1340 degrees of freedom
(657 observations deleted due to missingness)

Multiple R-squared: 0.231, Adjusted R-squared: 0.23
F-statistic: 201 on 2 and 1340 DF, p-value: <2e-16
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Sample selection results

--------------------------------------------
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
Newton-Raphson maximisation, 5 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -1057
2000 observations (657 censored and 1343 observed)
10 free parameters (df = 1990)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.48770 0.19248 -12.92 < 2e-16
married 0.46293 0.07203 6.43 1.6e-10
children 0.47002 0.02808 16.74 < 2e-16
education 0.05465 0.01096 4.99 6.6e-07
age 0.03504 0.00423 8.29 < 2e-16
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.19621 0.04761 46.13 <2e-16
education 0.04167 0.00238 17.51 <2e-16
age 0.00836 0.00092 9.09 <2e-16

Error terms:
Estimate Std. Error t value Pr(>|t|)

sigma 0.26192 0.00611 42.88 <2e-16
rho 0.47822 0.05768 8.29 <2e-16
--------------------------------------------
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